Discovery of small molecules that modulate transient protein-protein interactions leading to amyloid formation (360G-Wellcome-109154_Z_15_A)

£0

The development of anti-amyloid drugs has been hampered by the mechanistic complexity of amyloid formation pathways. In order to gain a greater understanding of the conformational changes and dynamic motions associated with fibrillogenesis, this project aims to develop and use small molecules to study an archetypical amyloid protein, beta2-microglobulin (beta2m) – specifically, the amyloidogenic truncation variant, DeltaN6. Small molecule fragments which are compatible with site-directed screening methods will be synthesised, so as to allow amyloid-modulating regions of DeltaN6 to be targeted. Hits which are identified in site-directed screens will be optimised as necessary, in order to produce small molecules which are capable of perturbing amyloid formation pathways upon binding. Understanding the link between small molecule-induced changes in DeltaN6 dynamics (to be studied using nuclear magnetic resonance spectroscopy), and changes in the rate and outcome of fibrillogenesis, will provide both beta2m-specific and generic insights into amyloid formation pathways.

Where is this data from?

This data was originally published by The Wellcome Trust. If you see something about your organisation or the funding it has received on this page that doesn't look right you can submit a grantee amendment request. You can hover over codes from standard codelists to see the user-friendly name provided by 360Giving.

Grant Details

Amount Awarded 0
Applicant Surname Cawood
Approval Committee Internal Decision Panel
Award Date 2017-01-31T00:00:00+00:00
Financial Year 2016/17
Grant Programme: Title PhD Studentship (Basic)
Internal ID 109154/Z/15/A
Lead Applicant Ms Emma Cawood
Partnership Value 0
Planned Dates: End Date 2019-09-30T00:00:00+00:00
Planned Dates: Start Date 2016-10-01T00:00:00+00:00
Recipient Org: Country United Kingdom
Region Yorkshire and the Humber