Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Probing nucleotide interactions with Kir6.2 using fluorescence spectroscopy. (360G-Wellcome-203731_Z_16_A)

The ATP-sensitive potassium (KATP) channel is a plasma membrane protein present in beta cells of the pacreas which plays a key role in insulin secretion. KATP acts as a metabolic sensor, alerting the beta cells when blood glucose raises too high and stimulating them to release insulin. In diabetes, normal KATP function is disrupted and beta cells no longer secrete insulin properly in response to blood glucose levels. The molecular structure of the channel is closely linked to its function; there have been several genetic studies linking various mutations (which often only affect one molecule in the channel!) to neonatal diabetes or increased propensity to type II diabetes. Our research aims to identify precisely how these small mutations can have such drastic changes in the activity of the channel by using a combination of fluorescent labels and channel current measurements to watch the KATP channel move in real time. We can then try to construct a model of how the channel converts different stimuli into movements, and how this is affected in mutations linked to diabetes.


30 Sep 2018

Grant details
Amount Awarded 0
Applicant Surname Usher
Approval Committee Internal Decision Panel
Award Date 2018-09-30T00:00:00+00:00
Financial Year 2017/18
Grant Programme: Title PhD Studentship (Basic)
Internal ID 203731/Z/16/A
Lead Applicant Mr Samuel Usher
Planned Dates: End Date 2020-09-30T00:00:00+00:00
Planned Dates: Start Date 2017-10-01T00:00:00+00:00
Recipient Org: Country United Kingdom
Region South East
Additional data added by GrantNav