Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Current Filters

Funders:
Paul Hamlyn Foundation
The Wellcome Trust
Recipients:
University College London
University of Glasgow
Amounts:
£0 - £500
£500 - £1,000

Filter By

Currency
Recipient Region
Recipient District
Recipient Organizations (clear)
University of Oxford (1,569) University of Cambridge (1,282) University College London (1,143) Imperial College London (748) University of Edinburgh (718) King's College London (519) University of Manchester (443) University of Bristol (420) London School of Hygiene & Tropical Medicine (391) University of Glasgow (335) University of Dundee (312) University of Liverpool (307) Newcastle University (299) University of Birmingham (298) Cardiff University (259) University of Leeds (235) Queen Mary University of London (190) University of Warwick (182) University of York (177) Liverpool School of Tropical Medicine (173) University of Nottingham (173) University of Sheffield (171) University of Exeter (153) University of Leicester (149) University of Southampton (125) University College Dublin (108) University of Aberdeen (107) Institute of Cancer Research (100) Birkbeck University of London (96) Queen's University Belfast (89) University of Sussex (88) St George's University of London (87) Wellcome Trust Sanger Institute (86) University of St Andrews (78) Medical Research Council (73) National University of Ireland Galway (72) University of Durham (71) University of Strathclyde (67) Royal Veterinary College (65) Trinity College Dublin (63) Kemri-Wellcome Trust Research Programme (60) Oxford Brookes University (58) University of Bath (55) University of Cape Town (52) Keele University (50) University of East Anglia (50) Embl At Hinxton (48) University of Kent (43) London School of Economics and Political Science (LSE) (38) University of Kwazulu Natal (35) See Less

Results

The host innate immunity limits the zoonotic potential of animal viruses. 25 Jun 2012

Mammalian cells possess a variety of sophisticated antiviral mechanisms that sense an incoming virus and trigger secretion of type I interferon (IFN-? and IFN-?) and type III interferon (IFN- ). The IFN response is the keystone of the host "innate" immunity against virus infections and results in the rapid expression of hundreds of IFN-stimulated genes (ISGs). Viruses have developed several strategies to cope with the host innate immunity. Interestingly, the vast majority of viruses that circulate in human populations originate from animals. However, crossing the species barrier is a significant hurdle for viruses to overcome. We hypothesise that in many cases the "jump" of an animalvirus to the human population is halted by human ISGs. In this project, we will investigate the anti-viral properties of a library of human ISGs against bluetongue virus (BTV) and African horse sickness virus (AHSV). We will selectthe human ISGs that have a major effect on BTV replication and obtain their sheep orthologs. Subsequently, we will compare the effect of human and sheep ISGs on BTV and AHSV replication. Our hypothesis is that human ISGs strongly inhibit replication of BTV and AHSV while sheep ISGs will be more effective in limiting AHSV than BTV.

Amount: £150,048
Funder: The Wellcome Trust
Recipient: University of Glasgow

The G protein-coupled receptor GPR35 in cardiovascular disease: downstream signalling, functional selectivity and potential as a therapeutic target 25 Jun 2012

G protein-coupled receptors transduce extracellular signals to cytoplasmic G proteins and other adapters. G protein-coupled receptor 35 (GPR35) has been associated with various diseases, including cardiovascular disorders such as hypertension, coronary artery disease and heart failure; however GPR35 is still poorly characterised and its precise role in disease remains unclear. The project will investigate the role of GPR35 in cardiovascular disease by addressing four key goals: Develop tools for the study of GPR35 activation. GPR35 and phospho GPR35 antibodies and G protein and arrestin selective GPR35 mutants will be generated. Determine the pathophysiological effects of GPR35 on the cardiovascular system. In vitro models of various cellular cardiovascular components will be used to assess migration, proliferation and hypertrophy in response to GPR35 modulation. The pathophysiological consequences of GPR35 modulation will be studied in vivo in a rat model of hypertension. Characterise a GPR35 knockout mouse. Blood pressure, vascular resistance andend-organ damage will be assessed in GPR35-deficient mice under basal conditions and following challenge with a range of pathological stimuli. Assess the role of G protein and arrestin dependent signalling pathways. Signalling downstream of GPR35 activation will be studied in cells expressing wild type receptor or G protein and arrestin-selective mutants.

Amount: £150,048
Funder: The Wellcome Trust
Recipient: University of Glasgow

The role of Bcl3 in skeletal health and disease 25 Jun 2012

In this project we will develop a microfluidic platform to explore both chemical and biochemical co-evolution for the development and understanding ofchemical and biochemical pathways responsible for antibiotic resistance in bacteria. In embarking on this we will develop a multiplexed droplet based evolutionary 'lab on a chip' device that incorporates digital control of chemical and biochemical input. Genetically engineered systems with increased evolvability will be explored with libraries of peptide-antibiotics produced using solvent-resistant micro-peptide droplet synthesis or available librariessynthesized / purchased. The integration of evolution algorithms controlling the micro-device in synergy with the chemical and bacterial libraries will allow us to explore a range of hypotheses for the development of new mechanisms of antibiotic development. For example, can embodied evolutionary approaches be used to accelerate biological directed evolution? Ultimately theaim will be for the chemical-based evolution of small molecules or biologics as a function of computer controlled algorithms allowing us to develop antibiotic drugs in a fundamentally new way.

Amount: £150,048
Funder: The Wellcome Trust
Recipient: University of Glasgow

Characterising mechanisms of macrophage subversion by Leishmania parasites 25 Jun 2012

This project aims to learn how Leishmania parasites can survive and prosper within macrophages. Recent metabolomics experiments have revealed that Leishmania produce and secrete large quantities of citrulline, a metabolic product of arginine deimination. Arginine is a precursor to nitric oxide, a toxic metabolite used as a key part of the antimicrobial reaction cascade within the macrophage. We hypothesise that conversion of arginine to citrulline by Leishmania parasites might be used to limit host-cell access to arginine and thus restrict its ability to create nitric oxide, thus contributing to the parasite's ability to survive. We have identified a gene in the Leishmania genome that is a candidate arginine deiminase, i.e. an enzyme capable of converting arginine to citrulline. We propose to verify thisrole by expressing the gene and assessing activity and also knocking the gene out in Leishmania to determine whether citrulline production is altered and how this affects other phenotypic traits including macrophage infectivity and survival. It is also clear that Leishmania parasites can prevent macrophages entering their activated state. We will therefore also investigate how macrophage metabolism is influenced during activation and how wild type and mutant Leishmania parasites affect these metabolic correlates to macrophage activation.

Amount: £150,048
Funder: The Wellcome Trust
Recipient: University of Glasgow

Unravelling the in vivo immune response against Schistosoma mansoni eggs 25 Jun 2012

Schistosomiasis is the second-most socioeconomically devastating parasitic disease. After infection, Schistosoma mansoni eggs become trapped in the smallintestine and the liver. These eggs drive a chronic immune response that generates fibrosis, causing a debilitating and eventually fatal loss of organ function. Drugs to reduce this inflammation are not available, and much remains to be learned about this pathogenic immune response against S. mansonieggs in vivo. Here we propose a detailed analysis of the soluble and cellular mediators thatinduce responses to S. mansoni eggs in the small intestine and the liver of mice in vivo. We will use novel tools to generate heretofore-unavailable insights into these mechanisms. These include recently developed flow cytometric analyses of immune cell populations, cell sorting, genetically modified mouse strains, and cutting-edge in vivo techniques. We aim to identify the specific cells that drive pathogenic responses to S. mansoni, andthe precise cellular sources of the soluble mediators that control this response. Our results will not only produce a detailed understanding of the cellular interactions between immune cells that respond to S. mansoni eggs, transferable to other parasitic infections or even allergic responses, but mayalso present targets for the specific immunosuppression of Schistosomiasis.

Amount: £150,048
Funder: The Wellcome Trust
Recipient: University of Glasgow

Structural and Functional characterisation of chlamydial inclusion proteins. 25 Jun 2012

The project aims to study the structure and function of two chlamydial inclusion proteins. Chlamydia is a major human pathogen, causing sexually transmitted disease and trachoma (a form of blindness). To replicate inside host cells, chlamydia build a specialised intracellular compartment called an inclusion, which is segregated from the host endocytic system but selectively engages key host organelles and secretory traffic. To achieve this, Chlamydiae deliver a family of hydrophobic inclusion proteins (Incs) into the inclusion membrane, but very little is kown about their structure and function. Exploiting our ability to purify these membrane proteins, the project aims to fully understand i0 the bases of membrane tubulation by IncC, ii) the nature of the novel endoplasmic reticulum retention signal within IncB, iii) the host targets if IncC and IncB and their roles during bacterial infection. the arising data will allow new insights into the molecular mechanism of this medicallu important pathogen.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Modulation of the folding energy landscape of a nascent polypeptide by interactions with the ribosome surface. 25 Jun 2012

He we propose identifying and developing a fast-folding protein domain as the new ribosome-nascent chain complex (RNC) system, and using a series of destabilising mutations to determine the effect of ribosome attachement on the foding eneregy landscape. Key goals in this project are the establishment of a suitable RNC system; development of NMR methodology for the study of surface interactions; and ultimately measurement of the effect ofribosomal attachment on the protein folding energy landscape.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Biophysical and structural investigations of DNA repair modulation by viruses. 25 Jun 2012

Viral proteins subvert various cellular processes to optimise the propogation or stable sojourn of virus genomes. Viral stealth and replication strategies can be compromised by uracil-DNA glycosylase (UDG) activity, making UDG a kown target of viruses infecting both prokaryotes and eukaryotes. In viruses of prokaryotes, UDG is silenced by the diverse protein inhibitors: a deeper investigation of structural diversity in this realm would benefit methodology in low homology bioinformatics, our understanding of protein evaluation, and inform the development of novel inhibitors of DNA repair enzymes. In human HIV-1 infections, UDG is targeted to the proteosome by association with the viral accessory protein Vpr. As a strategy for dealing with incoming virus genomes, it is possible that the UDG's ancillary role in somatic hyper-mutation may be reprised in combination with the anti-viral deoxycytidine deaminase, APOBEC3g (A3G). The HIV-1 accessory proteins Vif (targeting A3G), and Vpr, are therefore appealing anti-viral targets, and therapeutic molecules could likely be developed through biophysical and structural knowledge to their respective interactions. We aim to develop systems to identify novel viral predictors of UDG and to produce viral proteins using Vpr [and Vif with relevance to A3G] stably for biophysical and structural analyses via NMR and x-ray crystallography.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

The Role of Exported Malaria Parasite Proteins in Pathogenesis. 25 Jun 2012

Understanding the molecular mechanism of protein export by the malaria parasite and the role of exported proteins in parasite survival.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

The Secret Life of Proteins - Computational and Experimental Studies of Moonlighting Proteins. 25 Jun 2012

The aim of the project is to further our understanding of protein moonlighting (multiple unrelatedfunctions of a single protein). During this project we will explore a number of questions that relate to the molecular mechanisms and properties that allow or enhance the moonlighting potential of a protein. the project will concentrate on computational approaches wit the aim of producing testable predictions, which we then hope to veryify with experimental studies.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Development of diencephalic asymmetries in zebrafish and chick embryos. 25 Jun 2012

While most of the body is symmetrical with respect to the midline, a few functions, including higher order behaviours and cognitive functions in the brain, have evolved to be concentrated on one (left or right) side. Although the molecular mechanisms underlying left/right asymmetry of body organs are now fairly well understood, we still know little about how lateralised brain functions arise during development. Recent research has discovered that the parapineal, an asymmetrically positioned group of neurons in the left diencephalon, is essential for development of asymmetries in the adjacent epithalamus, but little is known about the molecular mechanisms of this regulation. Also, no region equivalent to parapineal has yet been discovered in most vertebrates including birds and mammals, whereas the molecular pathways leading to epithalamic asymmetries are likely to be conserved. This project explores how epithalamic asymmetries develop in two different species - zebrafish and chicken, first by establishing the molecular mechanisms by which the parapineal regulates this process in zebrafish, then by studying

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

The role of c-Jun in controlling the repair-supportive phenotype of Schwann cells in injured nerves. 25 Jun 2012

Work in the Jessen and Mirsky laboratory, using a mouse in which the transcription factor c-Jun has been inactivated in Schwann cells only (c-Jun-cKO mouse), shows that the Schwann cell response to nerve injury depends on activation of the transcription factor c-Jun in Schwann cells, and that this protein specifies the phenotype of the Bunger repair cell, a cell essential for nerve regeneration. Consequently, nerve repair is severely compromised in c-JuncKO mice. This project will address the following issues: 1) Establish an in vitro model of the regeneration deficit in c-Jun-cKO mice, using adult DRG neurons and Scwann cells from injured nerves. 2) Use this model to analyse Schwann cell factors that control axon growth and neuronal survival. 3) Test whether axonalregeneration and neuronal survival can be improved by enhancing Schwann cell c-Jun expression. 4) Determine whether the diminishing ability of distal nerve tosupport repair with time after injury ( the deterioration of the distal stump ) is due to instability of the Bungner repairsupportive phenotype, and its gradual attenuation. 5) Test whether the repair-supportive Schwann cell phenotype

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Morphogenesis underlying choroid fissure fusion. 25 Jun 2012

Coloboma is a defect in the morphogenesis of the eye that results from failureof choroid fissure closure. It is among the most common congenital defects in humans and can significantly impact vision. However, very little is known about the developmental mechanisms regulating choroid fissure fusion. Therefore, I aim to resolve the cellular and molecular mechanisms underlying choroid fissure closure by high-resolution 4D confocal imaging of zebrafish retinal cells during fusion. In particular, I will investigate how cell cycle progression regulates the epithelial remodelling that accompanies fusion.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

PDGF as a cell autonomous regulator of Epithelial-to-Mesenchymal-Transition (EMT) in neural crest cells. 25 Jun 2012

A defining characteristic of neural crest (NC) cells is the epithelial-to?mesenchymal transition (EMT) they undergo to segregate from the neural tube to start migration. EMT is a cellular process converting non-motile epithelial cells to motile mesenchymal cells, showing strikingly common characteristics in metastatic cancer cells and NC cells. Preliminary data suggests that PDGF signalling is required cell-autonomously for NC cell migration in Xenopus laevis embryos whereas PDGF loss-of-function is sufficient to inhibit EMT in in vitro cultures. The proposed project aims to investigate cellular and Molecular mechanisms governed by PDGF during EMT of NC and to extrapolate the gained knowledge onto cancer cell metastasis. We will perform high-resolution time-lapse video analysis of NC EMT comparing gain-of-function and loss-of-function of PDGF in vivo and in vitro. Further study will aim to identify the pathways and downstream targets triggered by PDGF signalling. Finally the gained knowledge will be used to study EMT in cancer cell lines and a transparent zebrafish model allowing the live-imaging

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Blastema formation and skeletogenesis during arm regeneration of the brittle star Amphiura filiformis: cellular and molecular characterization. 25 Jun 2012

The aim of this research project is to understand the initial stages of brittle star arm regeneration in terms of stem cell involvement, cell specification and the earliest activation of the skeletogenic gene regulatory network. The brittle star is a marine organism with a unique capability for regenerating whole arms post-amputation or after injury. To determine whether the regenerative blastema, a mass of proliferative cells giving rise to the entire structure, is composed of stem cells or dedifferentiating cells, molecular tools will be employed for their characterization. Stem cell markers and lineage tracing techniques will be used to identify the nature of the cells, their origins and migratory behaviour. The regenerating arm of the brittle star is contains several skeletal structures and the second aim of this project is to understand the cohort of signalling pathways involved in the early specification of the cell lineages which will develop into this adult tissue. This will be achieved by using molecular techniques and a candidate gene approach for studying the genes that have already been well-characterised in the closely-related sea urchin, , for which a complete gene regulatory network for the embryonic development of skeletogenic cells has been published.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Probing the inhibitory neurosteroid binding site on the GABAA receptor 25 Jun 2012

Neurosteroids are naturally occurring potent modulators of type A GABA receptors in the brain. Although there are many neurosteroid metabolites, these can be characterised into two distinct classes - those that potentiate GABAA receptor function and those that inhibit. Previously we deduced where potentiating neurosteroids bind on the GABAA receptor, but the inhibitory neurosteroids remain unaffected if this site is disrupted. This concurs with the belief that such inhibitory neurosteroids bind to another discrete site onthe GABAA receptor. Its discovery will allow the function of the inhibitory neurosteroids to be explored in the brain. We will select a GABA receptor thatlacks sensitivity to inhibitory neurosteroids and use this structure in combination with GABAA receptor subunits to make chimeric and eventually pointmutated receptors to identify the inhibitory neurosteroid binding site. Once the site is found, we will disrupt its function and then observe the consequences for inhibitory synaptic and tonic inhibition. Overall, this studywill use structural, electrophysiological, imaging, pharmacological and molecular approaches with GABA receptors. This study will bring much need clarity to the role and importance of inhibitory neurosteroids in the brain.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Single neuron connectomics and functional mapping in visual cortex 25 Jun 2012

Understanding how cortical connectivity organizes cortical computations is a long-standing challenge in neuroscience. I propose to investigate the relationbetween circuit connectivity and circuit function in the primary visual cortex(V1). To this end, I will deploy a novel monosynaptic retrograde tracing strategy based on rabies virus to identify and functionally characterize the network of neurons that connect to a given postsynaptic V1 neuron. This network constitutes the neuron's "presynaptic connectome": it determines the neuron's functional responses and coding strategy. To measure and manipulate neuronal activity with single cell resolution, I will combine this approach with two-photon imaging of genetically encoded calcium indicators, with optogenetics, and with single-cell patch clamp recordings. My first aim is to establish how cortical connectivity governs sensory representation by population of neurons. To what extent do synaptic connections in V1 determine which neurons will fire together in response to sensory input? Recurrent connectivity in V1 microcircuits may constrain population responses to stereotyped patterns of activation (sensory representations) coding for specific features in the visual scene. My second aim is to elucidate how receptive field properties of V1 neurons originate from the interplay between neuronal microcircuits, and within them, from synaptic interactions among different cell classes.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Development, plasticity, energy supply and pathology of myelinated axons 25 Jun 2012

The white matter of the CNS allows rapid transmission of information at low energetic cost. Despite its importance for brain function, the development, plasticity, energetics and pathology of the white matter are poorly understood. We will investigate, in vitro in brain slices and in vivo in zebrafish: (1) how electrical activity in oligodendrocyte precursors regulates myelination; (2) mechanisms underlying the tuning of conduction speed of myelinated axons; (3) mechanisms localising mitochondria in oligodendrocyte lineage cells; (4) how microglia survey the white matter in health and disease.

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Mechanisms of grid cell processing: interactions at the network level 25 Jun 2012

The primary goal of this project is to establish the role of cholinergic signalling in the modulation of grid cell firing patterns. In particular, to study the relationship between Acetylcholine concentration in the Entorhinal Cortex and grid scale. Acetylcholine is a putative signal of novelty and uncertainty, and has been shown to affect the theta-band frequency of grid cell oscillations in-vitro. In parallel, grid scale is known to increase in novel situations. As such, we aim to demonstrate a role for Acetylcholine and its effects on theta-firing as a mechanism underlying changes in grid scale during situations of novelty and uncertainty. Examination of the biological basis of the rodent cognitive map is perhaps themost promising available model system in which we can bridge the gap from behaviour and cognition to neurons and circuits. Understanding how spatial firing in the entorhinal cortex and hippocampus is generated and modified in novel environments would be an important extension of our knowledge of spatialcognition, and more generally to our understanding of the process of memory formation

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London

Glial regulation of neural signalling in health and disease with an emphasis on understanding its possible role in psychotic-like states 25 Jun 2012

Astrocytes respond to neurotransmitters released from neurons with a rise of [Ca2+]i. It is becoming increasingly clear that these [Ca2+]i rises can in turn evoke neurotransmitter release from astrocytes, which modulates neuronal function, and that microglial cells can regulate this signalling from astrocytes. We will use patch-clamping, calcium imaging and calcium uncaging in brain slices, to examine the following aspects of these newly discovered signalling pathways, which have been little studied and which may be relevant to understanding both the normal function of the CNS and the changes of function which lead to psychotic-like states. (1) How do the amine transmitters serotonin, dopamine and noradrenaline modulate astrocyte [Ca2+]i and thus synaptic currents in nearby neurons? (2) How do the main excitatory and inhibitory transmitters glutamate and GABA modulate astrocyte [Ca2+]i and thus synaptic currents in nearby neurons? (3) How do endocannabinoids modulate astrocyte [Ca2+]i and thus synaptic currents in nearby neurons? (4) How do agents known to induce psychotic-like states, such as amphetamine, LSD, ketamine and exogenous cannabinoids, modulate astrocyte [Ca2+]i and thus synaptic currents in nearby neurons? (5) What is the role of ATP and adenosine in the above phenomena? (6) How do microglia regulate this signalling?

Amount: £162,047
Funder: The Wellcome Trust
Recipient: University College London