Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Current Filters

Currency:
GBP
Recipients:
University of Cambridge
University of Oxford
University College London

Results

Politics, Philosophy and Economics of Health 30 Jun 2018

This project will examine benefits sharing for the provision of genetic information in the creation of medical treatments for infectious diseases. Networks to enable the international sharing of genetic material are a cornerstone of pandemic preparedness initiatives. Countries with the highest disease burdens share their isolated virus strains, that are utilised by pharmaceutical companies to create patented therapies, typically inaccessible to the citizens of the country from which they originated. The inequity of such a system is clear. In response to Indonesia’s 2006 protest, the Pandemic Influenza Preparedness Framework (PIP) was developed to facilitate benefits sharing. Uniquely, this framework set a standard of practice for governments, academics, and the private sector, and enabled it to be enforced through the use of civil contractual legislation. However, recent scientific and technological advancements, such as gene sequencing data (GSD), may serve to diminish the framework’s capacity to promote global health justice. Through an evaluation of the effectiveness and equity of current policy, this research attempts to highlight areas of tensions that arise in light of recent innovation. If left unaddressed, these new gaps could impede the goal of fairness that these policies set out to achieve, directly impacting the health of individuals globally.

Amount: £27,140
Funder: The Wellcome Trust
Recipient: University College London

Understanding Medical Black Boxes: A Philosophical Analysis of AI Explainability 26 Jul 2018

I plan during the next two years to develop a major, multi-year project into AI explainability in medical contexts. This project will connect existing literatures in philosophy of science, philosophy of medicine and medical ethics, where problems of understanding and explanation have been extensively studied, to the emerging literature on explainability in machine learning and the ethics of AI. The aim will be (i) to enhance our understanding of the problems AI systems raise for explainability in medical contexts and (ii) to collaborate with machine learning researchers to develop technical research apt to address these problems. The existing literatures on explainability and understanding in medicine are vast and have not previously been systematically connected to the ethics of AI. To lay the groundworks for a later grant proposal, this application proposes to conduct three pilot-studies, focusing on potential challenges from AI to: (1) mechanistic understanding, (2) clinical judgement and diagnostic reasoning and (3) informed consent. A part-time research assistant will assist in scoping the relevant literatures. Travel to groups at other universities and a workshop in Cambridge will furthermore help establish contacts with a network of researchers interested in the ethics of AI and AI explainability in medical contexts.

Amount: £86,561
Funder: The Wellcome Trust
Recipient: University of Cambridge

Crafting Qualitative Health Research for the Future 04 Dec 2017

Healthcare environments across the globe are encountering new challenges as they respond to changing populations, global austerity, rapid technological advances, personalised medicine, and demands for more patient involvement. We believe that qualitative health research (QHR) can contribute to our understanding and responses to these challenges, and we have developed a proposal which aims to expand and improve the work of this field. This proposed work will be conducted through our UCL Qualitative Health Research Network (QHRN) and will include the following activities: 1) a networking and brainstorming event to create a forum for the critical analysis and improvement of QHR; 2) the fourth QHRN symposium, a two-day event with 200 delegates, 20 oral presentations and 40 posters; and 3) our quarterly seminar series, which showcases presentations from leading scholars in QHR. The main outputs generated through these events and activities will include: A position paper detailing recommendations for the improvement of QHR, publication of our proceedings from the symposium in a peer-reviewed journal, workshops and other training opportunities at the QHRN Symposium, the continuation of communication channels for members of the network (website, email listserv, and Twitter account), and dissemination of findings of QHR to patient organisations, practitioners and policymakers.

Amount: £29,198
Funder: The Wellcome Trust
Recipient: University College London

Global Health 50/50: Towards accountability for gender equality in global health 04 Dec 2017

We propose to establish Global Health 50/50, a new initiative seeking to advance action and accountability for gender-equality in global health. Gender is a key driver of power to exercise the right to health, including exposure to risks of poor health, health seeking behaviours, and access to quality health care. Gender inequalities continue to define and drive career pathways and opportunities for people working in global health organizations. While some progress has been made, major gaps and challenges remain. We seek to raise awareness of persistent inequality and identify pathways to change. We will establish a network of experts in gender and global health, working with an advisory body drawn from the realms of politics, development, management, advocacy, human rights, social justice. Global Health 50/50 will publish an annual report on the state of gender-related policies and practices of 150 major organizations working in the field of global health.

Amount: £29,764
Funder: The Wellcome Trust
Recipient: University College London

Delivering Care Through AI Systems 08 May 2018

For this project, I aim to examine 4 issues. First, I will consider whether introducing machine learning (ML) systems requires a revision of the ‘standard of care’ for clinicians, by understanding the moral permissibility of using second-hand information (from ‘black box’ systems) and whether practitioners’ medical expertise justifies judgments about such systems. Second, given the possibility of ML systems systematically underserving groups that are underrepresented in the training data, I will consider accounts of distributive justice to operationalize ‘equal access to care’. Third, to address the disagreements between clinicians on how to trade-off risks in clinical choices, I will catalogue the factual, rational, and moral sources of this disagreement to yield a principled method of evaluating these trade-offs. Finally, I will weigh the potential harms and gains from deploying AI systems in healthcare so that certain ethical and legal arguments don’t deprive society of the good such systems can provide. Key goals: To represent the ethical concerns in deploying AI systems over the appropriate standard of care, ensuring equal access to care, and representing reasoning about risk trade-offs. To balance these concerns against the benefits of such a deployment. To deliver practical ethical guidance to healthcare policy-makers and AI system-builders.

Amount: £140,538
Funder: The Wellcome Trust
Recipient: University of Oxford

Residues and remains: Anthropology of practices around pregnancy endings 23 Jul 2018

My research explores the practices around pregnancy endings and their remains, including acts of forgetting and remembering, and asks what do these reveal about the status of foetuses, women and mothers in contemporary England? Pregnancy endings provide opportunities to interrogate anthropological assumptions about the contemporary family, motherhood, personhood and kinship. To analyse this, I will focus on the practices in the aftermath of a pregnancy ending to understand what they reveal about the values afforded to the remains in different contexts (clinic, home, burial site, crematorium, grave site etc) and by different stakeholders. My research will explore how reactions to and practices around pregnancy endings and remains reflect wider cultural trends in the UK, particularly around motherhood as highly moralized and notions of foetal personhood. I ask how does grief (or the absence of it) intersect with the relationship of the materiality of the remains and the woman’s body. I will conduct in-depth, embedded and analytic ethnography at the Rose Hill Clinic, East Oxford and other sites. Key outputs include a monograph, 3-4 journal articles, and materials aimed at women/ couples (i.e. newspaper articles, information video, radio/ television), health professionals and relevant others (i.e funeral providers, support groups).

Amount: £388,698
Funder: The Wellcome Trust
Recipient: University College London

Lost&Found: engaging with narratives of ageing 30 Nov 2017

no abstract available.

Amount: £123,300
Funder: The Wellcome Trust
Recipient: University College London

Menstruation and the moon in early modern England 08 May 2018

The association of menstrual synchrony with the moon relates back to ancient mythologies. Historians largely dismiss the relevance of a lunar theory of menstruation by the Middle Ages, but the moon’s ability to disturb a woman’s womb through her menstrual blood was continuously discussed by early modern medical and natural philosophical writers. This project asks how the sympathetic connection between menstruation and the moon was manifest in learned discourses, vernacular knowledge, and everyday practices. Answering this requires studying women’s knowledge, the relationship between natural and occult philosophy, and the link between theory and practice in medicine. This research draws together rich, diverse manuscript and printed sources to demonstrate how the influence of the moon over the female body was ubiquitous in early modern medicine and natural philosophy. In vernacular medical handbooks, the moon was a popular socio-cultural symbol of femininity and sexual difference. Its power over the female body was demonstrated through practice in recipe books, casebooks, female-authored almanacs and medical treatises on phlebotomy. The cause and consequences of its influence were debated through learned discourse, highlighting the temporal dynamics of menstruation, and the continuous significance of fluids to changing intellectual frameworks of the body.

Amount: £100,057
Funder: The Wellcome Trust
Recipient: University of Cambridge

Schwann cell-axonal communication during axonal degeneration and regrowth 25 May 2017

Myelinating and non-myelinating Schwann cells are reprogrammed after nerve injury into repair Schwann cells, specialized for maintaining survival of injured neurons and supporting axonal regeneration. This process is regulated by Schwann cell-intrinsic signals, such as the transcription factor c-Jun, however few other candidates have been identified. It is, currently, unknown how Schwann cell reprogramming is initiated, but unidentified extrinsic signals from injured axons are likely candidates. I aim to delineate the spatial and temporal regulation of Schwann cell-intrinsic downstream signals in real-time and define their role in repair Schwann cell function and axonal regeneration. Secondly, I aim to test the hypothesis that axon-derived signals initiate Schwann cell reprogramming during nerve injury. I will use cell culture, in vivo mouse models and a live and dynamic zebrafish larval model of nerve injury. This study will be the first to investigate how axon-intrinsic mechanisms of nervous system injury interplay with glial cell molecular responses to nerve damage, in real-time. Using cutting edge techniques in two species, this project will significantly advance our understanding of Schwann cell-axonal biology and tissue repair. Excitingly, this research may identify new potential therapeutic targets to improve poorly regenerating human nerves and treat patients with neuropathies.

Amount: £426,876
Funder: The Wellcome Trust
Recipient: University of Cambridge

The role of BMP signalling in diseases of the motor unit 06 Dec 2016

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset, neuromuscular disease characterized by lower motor neuron degeneration as result of misfolding and accumulation of mutant Androgen Receptor (AR). In recent years this scenario of selective neuronal vulnerability has been challenged by the discovery that in SBMA, as in other diseases of the motor unit, skeletal muscle, rather than being a mere bystander of motor neuron degeneration, is primarily affected and therapies exclusively targeting muscle ameliorate the pathology in motor neuron while preventing the development of a neuromuscular phenotype in animal models. My goal is to elucidate the molecular mechanisms underlying the intrinsic contribution of skeletal muscle in SBMA pathogenesis. I will investigate the role of the Bone Morphogenetic Protein (BMP) signalling pathway in SBMA pathophysiology, testing the central hypothesis that failure to activate the protective BMP pathway in SBMA muscle in response to denervation causes primary muscle atrophy and affects motor neuron ability to cope with the stress posed by mutant AR. The rationale is to provide a molecular basis for the cell-autonomous and non-cell autonomous roles of muscle in the mechanisms of toxicity in SBMA and other diseases of the motor unit and to identify novel therapeutic targets.

Amount: £1,048,938
Funder: The Wellcome Trust
Recipient: University of Oxford

Putting genomic surveillance at the heart of viral epidemic response. 05 Apr 2017

This proposal is to develop an end-to-end system for processing samples from viral outbreaks to generate real-time epidemiological information that is interpretable and actionable by public health bodies. Fast evolving RNA viruses (such as Ebola, MERS, SARS, influenza etc) continually accumulate changes in their genomes that can be used to reconstruct the epidemiological processes that drive the epidemic. Based around a recently developed, single-molecule portable sequencing instrument, the MinION, we will create a 'lab-in-a-suitcase' that will be deployed to remote and resource-limited locations. These will be used to sequence viral genomes from infected patients which will then be uploaded to a central database for rapid analysis. We will develop methods for a wide-range of emerging viral diseases. Novel molecular biology methods will allow us to sequence individual viruses within a patient. Bioinformatics tools will be developed simple enough for non-bioinformaticians to use, without reliance on Internet connectivity. We will develop software to integrate these data and associated epidemiological knowledge to reveal the processes of transmission, virus evolution and epidemiological linkage. Finally we will develop a web-based visualization platform where the outputs of the statistical analyses can be interrogated for epidemiological insights within days of samples being taken from patients.

Amount: £482,639
Funder: The Wellcome Trust
Recipient: University of Cambridge

Understanding mammalian interphase genome structure in mouse ES cells 05 Apr 2017

The folding of genomic DNA from the beads-on-a-string like structure of nucleosomes into higher order assemblies is critically linked to nuclear processes, but it is unclear to what degree it is a cause or consequence of function. We aim to understand whether the Nucleosome Remodeling and Deacetylation (NuRD) complex regulates chromatin structure to control transcription, or whether it is NuRD’s regulation of transcription that results in global changes in chromosome structure. We have calculated the first 3D structures of entire mammalian genomes using a new chromosome conformation capture procedure, which combines imaging with Hi-C processing of the same single cell. Our objectives are now: To study: 1) how interphase mammalian genome structure is established in G1; 2) the factors that drive this formation and; 3) how this organisation is regulated by chromatin remodellers (such as the NuRD complex) as mESC’s differentiate. To build a dedicated bespoke microscope for 3D double helix point spread function detection with light sheet activation, optimised for 3D single-molecule/super-resolution imaging of proteins such as the NuRD complex. To combine 3D super-resolution imaging and the biochemical processing steps of single cell Hi-C to directly correlate binding of protein complexes to regions of the structures.

Amount: £2,031,409
Funder: The Wellcome Trust
Recipient: University of Cambridge

An advanced cryoEM instrument for the University of Cambridge 07 Dec 2016

We seek support to consolidate an advanced electron cryo-microscopy (cryo-EM) facility dedicated to structural studies of biological macromolecular assemblies. The facility would provide a revolutionary new tool to the large structural biology community in the University that would enable acquisition of critical data in support of a wide and diverse range of projects tackling fundamental problems in molecular biology relevant to human health. Currently, the named applicants primarily use X-ray crystallography to study large assemblies, but many of these samples cannot be readily crystallised. The recent development of a new generation of direct electron detectors, together with sophisticated data-processing software, has dramatically improved cryo-EM analysis, which now achieves routinely sub-nanometer resolution. Until recently, researchers in the university did not have access to cryoEM, but this has changed with the recent Wellcome Trust award to purchase a cryo-EM instrument for sample screening and intermediate resolution structure determination. We are building on this support, to develop the second phase of our strategy and seek funding for an advanced microscope capable of high resolution structure determination to complement and extend our existing instrumentations.

Amount: £3,000,000
Funder: The Wellcome Trust
Recipient: University of Cambridge

Transgenerational Epigenetic Inheritance - Cichlid as the New Model 05 Dec 2016

I aim to take advantage of the cichlid fish of Malawi to study the interaction between transposable elements, non-coding RNAs, epigenetics and heritability. This is in line with the overall goal of my Investigator Award. I believe this system to be superior to equivalent experiments we might conduct in mice. This is due largely to the high phenotypic diversity and low genomic diversity of these fishes. At the time of writing of my Wellcome Trust Investigator Award the cichlid model was too immature to proceed with an experimental plan. Now we have the required genomics, RNomics and epigenetics (DNA methylation) are all in place

Amount: £218,440
Funder: The Wellcome Trust
Recipient: University of Cambridge

The metabolic regulation of hypoxia inducible transcription factors. 05 Dec 2016

We have recently identified a novel pathway for metabolic regulation of HIF1 alpha by the OGDHC1. To continue this new area of research, it is essential that we have the necessary funds to maintian our competitive edge within the field, without diverting resources from our successful ubiquitin studies. The initial research on HIFs has been conducted by a talented graduate student, Stephen Burr. The timing of this funding request is particularly important, as it will allow Stephen to transfer his skills with a sufficient overlap for a new postdoctoral researcher to pursue this project.

Amount: £127,447
Funder: The Wellcome Trust
Recipient: University of Cambridge

Structural and functional dissection of the RH5:CyRPA:RIPR complex required for erythrocyte invasion by Plasmodium falciparum 05 Dec 2016

Invasion of human erythrocytes by Plasmodium falciparum is essential for parasite replication and occurs before the symptoms of malaria. It is a complex process involving many parasite surface proteins. Recently, one of these, RH5, emerged as the leading vaccine candidate to target the ‘blood stage’ of the parasite life cycle. RH5 interacts with erythrocyte basigin while monoclonal antibodies that prevent binding also prevent erythrocyte invasion. Immunization with RH5 protects animal models from parasite infection and RH5 enters human clinical trials in 2016. We already determined the structure of RH5 bound to basigin and inhibitory antibodies: a major goal of my investigator award. On the merozoite surface, RH5 forms part of a larger complex, interacting with CyRPA, RIPR and a fourth, GPI-anchored component. RH5, CyRPA and RIPR are each essential for erythrocyte invasion and are targets of antibodies that block invasion. Despite this, their functions are unknown, leaving a major gap in our understanding of erythrocyte invasion by Plasmodium falciparum. We will now undertake structure-function studies of the RH5:CyRPA:RIPR complex. Working with Simon Draper, we have developed eukaryotic expression systems to produce RH5, RIPR and CyRPA. We assembled them into a complex and showed that this is elongated, homogeneous and rigid by negative stain electron microscopy. Monoclonal antibodies targeting each component havebeen generated. We will now determine the structure of this recombinant RH5:CyRPA:RIPR complex using electron cryo-microscopy, and investigate where inhibitory monoclonal antibodies bind.

Amount: £150,000
Funder: The Wellcome Trust
Recipient: University of Oxford

Computational tools for analysing developmental morphogenesis at the tissue-scale 05 Dec 2016

Computational tools for analysing developmental morphogenesis at the tissue-scale

Amount: £47,159
Funder: The Wellcome Trust
Recipient: University of Cambridge

The role of aberrant RNA processing in the pathogenesis of Multiple Myeloma. 30 Sep 2017

A role for RNA binding and processing proteins in the control of eukaryotic cellular processes and in disease, including cancer, is emerging . I led the initial sequencing of the myeloma genome at the Broad Institute of MIT and Harvard. A key finding was mutations in RNA processing genes, DIS3 or FAM46C in 25% of cases. These findings have been independently corroborated, establishing these mutations as genuine drivers of the disease. DIS3 is the catalytic component of the exosome, an essenti al RNA processing complex. FAM46C is poorly characterized, but available evidence suggests it has roles in RNA processing in a lineage-dependent manner. This proposal seeks to better characterize these genes and mutations. Characterization of FAM46C mutations will be performed by knock-out of the gene from the DT40 cell line, determination of phenotype and rescue experiments. Lineage-dependent transcriptional pathways affected by altered transcript stability will be identified by RNA sequenci ng and confirmed in primary myeloma samples. Known aberrant RNA processing phenotypes associated with DIS3 loss/mutation will be sought by RNA sequencing in primary myeloma samples. The pathways affected by mutant DIS3 in myeloma will be identified using yeast genetic screens and classical yeast complementation experiments.

Amount: £250,346
Funder: The Wellcome Trust
Recipient: University of Cambridge

In vivo mechanisms of epithelial tissue morphogenesis 11 Jul 2017

Understanding how a tri-dimensional tissue is built from the genetic blueprint is a key frontier in biology. In addition to genes known to be important in specific aspects of morphogenesis, physical constraints and properties play a major role in building tissues. In this proposal, I aim to understand how the genetic inputs integrate with the mechanical properties of the cells and tissues to produce form. To investigate this, we study the early development of the Drosophila embryo. We have found previously that actomyosin-rich boundaries play an important role in two fundamental and conserved morphogenetic phenomena, axis extension and compartmental boundary formation. We have also found that an extrinsic force contributes to axis extension. We will build on these findings by first investigating how the actomyosin-rich boundaries form and how they might repair genetic patterns during axis extension. Second, we will ask how, during compartmentalisation, they control the planar orientation of cell division and also epithelial folding. Finally, we will examine the impact of actomyosin-rich boundaries and extrinsic forces on epithelial tissue mechanics. Our approaches will be interdisciplinary, combining genetic, quantitative and in silico analyses to find novel and universal morphogenetic rules.

Amount: £1,440,082
Funder: The Wellcome Trust
Recipient: University of Cambridge