Real-time modelling for forecasts during infectious disease outbreaks (360G-Wellcome-210758_Z_18_Z)
Local and international public health bodies often face difficult decisions during infectious disease outbreaks. Limits on human resources or logistics, for example in the speed and scale of vaccine production and delivery, require prioritisation of areas or population groups when rolling out an intervention. It is now possible to collect a wealth of epidemiological, genetic, spatial and behavioural data during an outbreak and make it available immediately for analysis. It remains an open question how these data are best combined for forecasts that can inform decision making. My fellowship aims to systematically investigate and improve the predictive capabilities of mathematical models during outbreaks. In particular, I will develop methods to combine different data sources in order to analyse an outbreak in real time. By testing these methods on a range of recent epidemic datasets, I will assess the predictive capabilities of models using different amounts and types of data. A particular focus will be on translating forecasts into recommendations for decisions, and on how the accuracy of forecasts affects the quality of these decisions. All the work will be conducted with the aim of generating a computational platform that is readily deployable in an outbreak situation for meaningful decision support.
Where is this data from?
This data was originally published by The Wellcome Trust. If you see something about your organisation or the funding it has received on this page that doesn't look right you can submit a grantee amendment request. You can hover over codes from standard codelists to see the user-friendly name provided by 360Giving.
Grant Details
Amount Awarded | 1614694 |
Applicant Surname | Funk |
Approval Committee | Science Interview Panel |
Award Date | 2018-04-10T00:00:00+00:00 |
Financial Year | 2017/18 |
Grant Programme: Title | Senior Research Fellowship Basic |
Internal ID | 210758/Z/18/Z |
Lead Applicant | Prof Sebastian Funk |
Partnership Value | 1614694 |
Planned Dates: End Date | 2025-03-31T00:00:00+00:00 |
Planned Dates: Start Date | 2018-09-01T00:00:00+00:00 |
Recipient Org: Country | United Kingdom |
Region | London |
Research conducted at multiple locations? | No |
Sponsor(s) | Prof John Edmunds |